Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Stem Cell Res Ther ; 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2291829

RESUMEN

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people's mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient's condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.

2.
J Environ Pathol Toxicol Oncol ; 40(3): 37-49, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1362158

RESUMEN

It has now been almost a year since the emergence of the deadly SARS-CoV-2 with millions of people losing their lives due to resultant COVID-19. Apart from the well-known consequences of respiratory illnesses, it has even effortlessly mapped itself into the nervous system through routes like blood, CSF, neurons, and olfactory cells. Interestingly, the interaction of SARS-CoV-2 with the nervous system cells like neurons, microglia, and astrocytes has been a factor to worsen COVID-19 through its neuroinflammatory actions. The release of cytokines due to astrocyte and microglial activation could progress towards the most anticipated cytokine storm proving to be detrimental in the management of COVID-19. Such hyper-inflammatory conditions could make the BBB vulnerable, encouraging excessive viral particles into the CNS, leading to further neurodegenerative pathologies like Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and Multiple Sclerosis. Excessive neuroinflammation and neurodegeneration being the anticipated root causes of these multiple conditions, it is also essential to look into other factors that synergistically enhance the worsening of these diseases in COVID-19 patients for which additional studies are essential.


Asunto(s)
COVID-19/etiología , Inflamación/virología , Enfermedades Neurodegenerativas/patología , SARS-CoV-2/patogenicidad , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inflamación/patología , Microglía/patología , Microglía/virología , Esclerosis Múltiple/patología , Esclerosis Múltiple/virología , Enfermedades Neurodegenerativas/virología , Neuronas/patología , Neuronas/virología
3.
Postgrad Med ; 133(5): 489-507, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-947595

RESUMEN

As the incidence of COVID-19 increases with time, more and more efforts are made to pave a way out for the therapeutic strategies to deal with the disease progression. Inflammation being a significant influencer in COVID-19 patients, it drives our focus onto the signaling cascades of the JAK/STAT pathway. JAK phosphorylation mediated by cytokine receptor activation leads to phosphorylation of STATs that translocate into the nucleus to translate for inflammatory mediators. The SARS-CoV-2 structural proteins like spike, nucleocapsid, membrane and envelope proteins along with the non- structural proteins 1-16 including proteases like 3CL pro and PLpro promote its entry and survival in hosts. The SARS-CoV-2 infection triggers inflammation via the JAK/STAT pathway leading to recruitment of pneumocytes, endothelial cells, macrophages, monocytes, lymphocytes, natural killer cells and dendritic cells progressing towards cytokine storm. This produces various inflammatory markers in the host that determine the disease severity. The JAK/STAT signaling also mediates immune responses via B cell and T cell differentiation.With an attempt to reduce excessive inflammation, JAK/STAT inhibitors like Ruxolitinib, Baricitinib, Tofacitinib have been employed that mediate its actions via suppressors of cytokine signaling, cytokine inducible SH2 containing protein, Protein inhibitor of activated STAT and protein tyrosine phosphatases. Even though they are implicated with multiple adverse effects, the regulatory authorities have supported its use, and numerous clinical trials are in progress to prove their safety and efficacy. On the contrary, the exact mechanism of JAK/STAT inhibition at molecular levels remains speculative for which further investigations are required.


Asunto(s)
Antiinflamatorios/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Mediadores de Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inhibidores de las Cinasas Janus/uso terapéutico , Quinasas Janus/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/metabolismo
4.
Life Sci ; 262: 118568, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-816773

RESUMEN

The world is fuming at SARS-CoV-2 for being the culprit for causing the devastating COVID-19, claiming millions of lives across the globe in the form of respiratory disorders. But lesser known are its effects on the CNS that are slowly surfacing in the worldwide population. Our review illustrates findings that claim SARS-CoV-2's arrival onto the ACE2 receptors of neuronal and glial cells mainly via CSF, olfactory nerve, trigeminal nerve, neuronal dissemination, and hematogenous pathways. The role of SARS-CoV-2 structural proteins in its smooth viral infectivity of the host cannot be ignored, especially the spike proteins that mediate spike attachment and host membrane fusion. Worth mentioning the nucleocapsid, envelope, and membrane proteins make the proliferation of SARS-CoV-2 much simpler than expected in spreading infection. This has led to catastrophic conditions like seizures, Guillain-Barré syndrome, viral encephalitis, meningoencephalitis, acute cerebrovascular disease, and respiratory failures. Placing a magnifying lens on the lesser-explored CNS consequences of COVID-19, we attempt to shift the focus of our readers onto the new supporting threats to which further studies are needed.


Asunto(s)
Encéfalo/fisiopatología , COVID-19/complicaciones , COVID-19/fisiopatología , Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/fisiopatología , SARS-CoV-2/fisiología , Humanos , Pandemias
5.
Curr Pharmacol Rep ; 6(5): 203-211, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-730388

RESUMEN

PURPOSE OF REVIEW: The rapid spread of virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned out to be a global emergency. Symptoms of this viral infection, coronavirus disease 2019 (COVID-19), include mild infections of the upper respiratory tract, viral pneumonia, respiratory failure, multiple organ failure and death. Till date, no drugs have been discovered to treat COVID-19 patients, and therefore, a considerable amount of interest has been shown in repurposing the existing drugs. RECENT FINDINGS: Out of these drugs, chloroquine (CQ) and hydroxychloroquine (HCQ) have demonstrated positive results indicating a potential antiviral role against SARS-CoV-2. Its mechanism of action (MOA) includes the interference in the endocytic pathway, blockade of sialic acid receptors, restriction of pH mediated spike (S) protein cleavage at the angiotensin-converting enzyme 2 (ACE2) binding site and prevention of cytokine storm. Unfortunately, its adverse effects like gastrointestinal complications, retinopathy and QT interval prolongation are evident in treated COVID-19 patients. Yet, multiple clinical trials have been employed in several countries to evaluate its ability in turning into a needed drug in this pandemic. SUMMARY: This review attempts to summarize the MOA of CQ/HCQ and its side effects. The existing literature hints that till date, the role of CQ/HCQ in COVID-19 may be sceptical, and further studies are warranted for obtaining a therapeutic option that could be effectively used across the world to rise out from this pandemic.

6.
Arch Med Res ; 51(6): 482-491, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-361197

RESUMEN

What began with a sign of pneumonia-related respiratory disorders in China has now become a pandemic named by WHO as Covid-19 known to be caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The SARS-CoV-2 are newly emerged ß coronaviruses belonging to the Coronaviridae family. SARS-CoV-2 has a positive viral RNA genome expressing open reading frames that code for structural and non-structural proteins. The structural proteins include spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins. The S1 subunit of S protein facilitates ACE2 mediated virus attachment while S2 subunit promotes membrane fusion. The presence of glutamine, asparagine, leucine, phenylalanine and serine amino acids in SARS-CoV-2 enhances ACE2 binding. The N protein is composed of a serine-rich linker region sandwiched between N Terminal Domain (NTD) and C Terminal Domain (CTD). These terminals play a role in viral entry and its processing post entry. The NTD forms orthorhombic crystals and binds to the viral genome. The linker region contains phosphorylation sites that regulate its functioning. The CTD promotes nucleocapsid formation. The E protein contains a NTD, hydrophobic domain and CTD which form viroporins needed for viral assembly. The M protein possesses hydrophilic C terminal and amphipathic N terminal. Its long-form promotes spike incorporations and the interaction with E facilitates virion production. As each protein is essential in viral functioning, this review describes the insights of SARS-CoV-2 structural proteins that would help in developing therapeutic strategies by targeting each protein to curb the rapidly growing pandemic.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , COVID-19 , Cápside/química , Genoma Viral , Humanos , Pulmón/virología , Sistemas de Lectura Abierta , Pandemias , Fosforilación , Unión Proteica , Dominios Proteicos , ARN Viral/genética , SARS-CoV-2 , Proteínas del Envoltorio Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA